WACV 2023 Paper Awards

Best Paper – Honorable Mention


“Select, Label, and Mix: Learning Discriminative Invariant Feature Representations for Partial Domain Adaptation”

Aadarsh Sahoo, Rameswar Panda, Rogerio Feris, Kate Saenko, Abir Das

 

Best Paper – Honorable Mention


“PSENet: Progressive Self-Enhancement Network for Unsupervised Extreme-Light Image Enhancement”

Hue Nguyen, Diep Tran, Khoi Nguyen, Rang Nguyen

 

Best Student Paper


“Self-supervised Monocular Depth Estimation from Thermal Images via Adversarial Multi-spectral Adaptation”

Ukcheol Shin, Kwanyong Park, Byeong-Uk Lee, Kyunghyun Lee, In So Kweon

 

Best Paper - Algorithms


“Lossy Image Compression with Quantized Hierarchical VAEs”

Zhihao Duan, Ming Lu, Zhan Ma, Fengqing Zhu

 

Best Paper - Applications


“Exemplar Guided Deep Neural Network for Spatial Transcriptomics Analysis of Gene Expression Prediction”

Yan Yang, Md Zakir Hossain, Eric A Stone, Shafin Rahman

 

image

 

WACV 2023 Award Finalists

  • “Lossy Image Compression with Quantized Hierarchical VAEs”, Zhihao Duan, Ming Lu, Zhan Ma, Fengqing Zhu
  • “Dance Style Transfer with Cross-modal Transformer”, Wenjie Yin, Hang Yin, Kim Baraka, Danica Kragic, Mårten Björkman
  • “Saliency Guided Experience Packing for Replay in Continual Learning”, Gobinda Saha, Kaushik Roy
  • “Self-supervised Monocular Depth Estimation from Thermal Images via Adversarial Multi-spectral Adaptation”, Ukcheol Shin, Kwanyong Park, Byeong-Uk Lee, Kyunghyun Lee, In So Kweon
  • “PSENet: Progressive Self-Enhancement Network for Unsupervised Extreme-Light Image Enhancement”, Hue Nguyen, Diep Tran, Khoi Nguyen, Rang Nguyen
  • “HyperShot: Few-Shot Learning by Kernel HyperNetworks”, Marcin Sendera, Marcin Przewięźlikowski, Konrad Karanowski, Maciej Zięba, Jacek Tabor, Przemysław Spurek
  • “FLAVR: Flow-Agnostic Video Representations for Fast Frame Interpolation”, Tarun Kalluri, Deepak Pathak, Manmohan Chandraker, Du Tran
  • “Select, Label, and Mix: Learning Discriminative Invariant Feature Representations for Partial Domain Adaptation”, Aadarsh Sahoo, Rameswar Panda, Rogerio Feris, Kate Saenko, Abir Das
  • “Probabilistic Volumetric Fusion for Dense Monocular SLAM”, Antoni Rosinol, John J. Leonard, Luca Carlone
  • “Self-Attention Message Passing for Contrastive Few-Shot Learning”, Ojas Kishorkumar Shirekar, Anuj Singh, Hadi Jamali-Rad
  • “Exemplar Guided Deep Neural Network for Spatial Transcriptomics Analysis of Gene Expression Prediction”, Yan Yang, Md Zakir Hossain, Eric A Stone, Shafin Rahman
  • “X-Align: Cross-Modal Cross-View Alignment for Bird's-Eye-View Segmentation”, Shubhankar Borse, Marvin Klingner, Varun Ravi Kumar, Hong Cai, Abdulaziz Almuzairee, Senthil Yogamani, Fatih Porikli